Apoptosis signal-regulating kinase 1 inhibition attenuates cardiac hypertrophy and cardiorenal fibrosis induced by uremic toxins: Implications for cardiorenal syndrome
نویسندگان
چکیده
Intracellular accumulation of protein-bound uremic toxins in the setting of cardiorenal syndrome leads to adverse effects on cardiorenal cellular functions, where cardiac hypertrophy and cardiorenal fibrosis are the hallmarks. In this study, we sought to determine if Apoptosis Signal-Regulated Kinase 1 (ASK1), an upstream regulator of cellular stress response, mediates cardiac hypertrophy and cardiorenal fibrosis induced by indoxyl sulfate (IS) and p-cresol sulfate (PCS) in vitro, and whether ASK1 inhibition is beneficial to ameliorate these cellular effects. PCS augmented cardiac myocyte hypertrophy and fibroblast collagen synthesis (as determined by 3H-leucine and 3H-proline incorporation, respectively), similar to our previous finding with IS. IS and PCS also increased collagen synthesis of proximal tubular cells and renal mesangial cells. Pro-hypertrophic (α-skeletal muscle actin and β-MHC) and pro-fibrotic genes (TGF-β1 and ctgf) were induced by both IS and PCS. Western blot analyses revealed the activation of ASK1 and downstream mitogen activated protein kinases (MAPKs) (p38MAPK and ERK1/2) as well as nuclear factor-kappa B (NF-κB) by IS and PCS. ASK1, OAT1/3, ERK1/2 and p38MAPK inhibitors suppressed all these effects. In summary, IS and PCS exhibit pro-hypertrophic and pro-fibrotic properties, at least in part, via the activation of ASK1 and its downstream pathways. ASK1 inhibitor is an effective therapeutic agent to alleviate protein-bound uremic toxin-induced cardiac hypertrophy and cardiorenal fibrosis in vitro, and may be translated further for cardiorenal syndrome therapy.
منابع مشابه
Cardiorenal syndrome: the emerging role of protein-bound uremic toxins.
Cardiorenal syndrome is a condition in which a complex interrelationship between cardiac dysfunction and renal dysfunction exists. Despite advances in treatment of both cardiovascular and kidney disease, cardiorenal syndrome remains a major global health problem. Characteristic of the pathophysiology of cardiorenal syndrome is bidirectional cross-talk; mediators/substances activated by the dise...
متن کاملCXCR4 antagonism attenuates the cardiorenal consequences of mineralocorticoid excess.
BACKGROUND Extensive evidence implicates aldosterone excess in the development and progression of cardiovascular disease states including hypertension, metabolic syndrome, cardiac hypertrophy, heart failure, and cardiorenal fibrosis. Recent studies show that activation of inflammatory cascade may play a specific role in the sequelae of mineralocorticoid activation, although the linking mechanis...
متن کاملApocynin Attenuates Cardiac Injury in Type 4 Cardiorenal Syndrome via Suppressing Cardiac Fibroblast Growth Factor-2 With Oxidative Stress Inhibition
BACKGROUND Type 4 cardiorenal syndrome (CRS) refers to the cardiac injury induced by chronic kidney disease. We aimed to assess oxidative stress and cardiac injury in patients with type 4 CRS, determine whether the antioxidant apocynin attenuated cardiac injury in rats with type 4 CRS, and explore potential mechanisms. METHODS AND RESULTS A cross-sectional study was conducted among patients w...
متن کاملCXCR4 Antagonism Attenuates the Cardiorenal Consequences of Mineralocorticoid Excess Chu et al: SDF-1/CXCR4 Pathway in Mineralocorticoid Excess
Background Extensive evidence implicates aldosterone excess in the development and progression of cardiovascular disease states including hypertension, metabolic syndrome, cardiac hypertrophy, heart failure and cardiorenal fibrosis. Recent studies show that activation of inflammatory cascade may play a specific role in the sequelae of mineralocorticoid activation, although the linking mechanism...
متن کاملInterplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy
Objective(s): The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...
متن کامل